Пусть это пирамида КАВС,
КО- высота пирамиды,
АН - высота правильного треугольника (основания пирамиды)
Пусть нужный угол между боковым ребром и плоскостью основания пирамиды - это угол между боковым ребром КА и высотой АН правильного треугольника ( основания пирамиды).
Высоту правильного треугольника находят по формуле
h=a(√3:2), где а- сторона треугольника.
h=8(√3:2)=4√3
Так как основание - правильный треугольник, основание высоты пирамиды находится в точке О пересечения высот правильного треугольника.
Расстояние от О до основания А ребра КА по свойству медиан равно 2/3 высоты АН
( она же и медиана);
АО=2*(4√3):3=(8√3):3
Треугольник КАО - прямоугольный ( высота перпендикулярна плоскости основания).
Тангенс угла КАО - это отношение
КО:АО=6:(8√3)/3
Тангенс КАО=18:8√3=9:4√3=3√3/4.