В классе учится 22 ученика. Докажите, что из них можно выбрать четырёх которые родились в...

0 голосов
90 просмотров

В классе учится 22 ученика. Докажите, что из них можно выбрать четырёх которые родились в один день недели.


Математика (15 баллов) | 90 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Эта задача на доказательство решается применением "принципа Дирихле". В самом простом варианте этот принцип звучит так: если 11 кроликов рассадить в 10 клеток, то по крайней мере в одной клетке окажутся 2 кролика.

     В нашей задаче, дни недели - это "клетки", их 7 (с понедельника по воскресенье), а 22 ученика - это "зайцы".

Доказательство: Очевидно, что 22:7=3 (ост.1). Это означает, что если бы в каждый день недели рождалось по 3 человека, то остался еще 1 остался бы "без дня пождения". Значит т.к. у нас 22 ученика имеют день рождения, то по крайней мере 4 из них - рождены в один день недели, что и требовалось доказать.

(66.2k баллов)
0 голосов

в неделе  7 дней .. (в задаче пожразумевается , что они рождались во все дни недели . )     22/7 = 3+1    3 - т.е. к классе по 3 чаловека родились в каждый день недели ..  и остается 1 ученик который родился в какой - то джень .. ... получается  что из класса можно выбрать 4 учеников родившихсяв 1 день недели

(3.6k баллов)