НУ ДОКАЖИТЕ!!!!! 2^n<n! n≥4 n∈N
Доказательство методом математической индукции База индукции при неравенство справедливо Гипотеза индукции. Пусть при неравенство справедливо, т.е. верно Индукционный переход. Докажем, что тогда справедливо неравенство при т.е. что справедливо неравенство так как при : 2" alt="k+1 \geq 4+1=5 >2" align="absmiddle" class="latex-formula"> Согласно принципу математической индукции данное утверждение справедливо. Доказано
5>2 помоему очевидно в школьной математике
неравенство надо доказать для n>=4
k>=4
значит k+1>=4+1=5
итого k+1>2
2^{K+1}=2^k*2^1=2^k*2
иначе говоря итого 2<k+1 рассмотрено дополнительно в комментариях, 2^k<k! по гипотезе, перемножили соответственно неотрицательные левые и правые части неравенств получили 2*2^k<(k+1)*k! или тоже самое что 2^{K+1}<(k+1)!