Основанием прямой призмы АВСА₁В₁С₁ является прямоугольный треугольник АВС с прямым углом В. Через ребро ВВ₁ проведено сечение ВВ₁D₁D, перпендикулярное к плоскости грани АА₁С₁С. Найдите площадь сечения, если АА₁= 10см, АD=27 см, DC=12см.
Грань АА₁С₁С содержит гипотенузы А₁С₁ верхнего и АС нижнего основания.
Сечение содержит высоты треугольников АВС и А₁В₁С₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Следовательно, ВD=В₁D₁ и
ВД=√АD·DС
ВD=√17·12=18 см
Площадь сечения - прямоугольника ВВ₁D₁D- равна произведению его сторон.
DD₁=АА₁=10 см по свойству ребер призмы
S ВВ₁D₁D=10·18=180 cм²