Знаменатель дроби не должен быть равным 0, х - 1 ≠ 0
Область определения
D (y) = (-∞; 1) U (1; +∞)
Найдем производную дроби по формуле (u/v)`= (u`v-uv`)/v²
y` = ( 2x·(x-1) - (x² - 3)·1) /(x-1)² = (x² - 2x +3)/(x-1)²
y` > 0 при любом х≠1
так как ( х - 1)²>0 и х² - 2х + 3 >0 любом х ∈(-∞; +∞) так как дискриминант квадратного трехчлена D= (-2)²-4·3 <0, ветви параболы направлены вверх а=1 > 0 и парабола ось ох не пересекает, расположена выше оси ох
Если производная неотрицательна на интервале , то функция возрастает на этом интервале