Докажите, что (n+1)^n - 1 делится ** n^2

0 голосов
66 просмотров

Докажите, что (n+1)^n - 1 делится на n^2


Математика (52 баллов) | 66 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

В школе Вы проходили формулы разницы квадратов и разницы кубоввспомним ихx²-y²=(x-y)(x+y)                       x²-1=(x-1)(x+1)

x³-y³=(x-y)(x²+xy+y²)               x³-1=(x-1)(x²+x+1)

только не проходят общую формулу

x^n-1=(x-1)(x^(n-1)+x^(n-2)+...+x^2+x+1)

раскладывает многочлен (n+1)^n - 1=(n+1-1)((n+1)^(n-1)+(n+1)^(n-2)+...+(n+1)^2+(n+1)+(n+1)^0) первый множитель делится на n

(316k баллов)