![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7B+%5Csqrt%7Bx-y%2B5%7D%3D3%7D+%5Catop+%7B+%5Csqrt%7Bx%2By-5%7D%3D11-2x+%7D%7D+%5Cright.+%5C%5C++%5C%5C++%5Cleft+%5C%7B+%7B%7Bx-y-5%3D9%7D+%5Catop+%7Bx%2By-5%3D121-44x%2B4+x%5E%7B2%7D+%7D%7D+%5Cright.++%5C%5C++%5C%5C++%5Cleft+%5C%7B+%7B%7Bx-y%3D4%7D+%5Catop+%7Bx%2By-5-121%2B44x-4+x%5E%7B2%7D+%3D0%7D%7D+%5Cright.+%5C%5C++%5C%5C++%5Cleft+%5C%7B+%7B%7By%3Dx-4%7D+%5Catop+%7B4+x%5E%7B2%7D+-45x-y%2B126%3D0%7D%7D+%5Cright.++%5C%5C++%5C%5C+4x%5E2-45x-x%2B4%2B126%3D0+%5C%5C++%5C%5C+4x%5E2-46x%2B130%3D0+%5C%5C++%5C%5C+D%3D%28-46%29%5E2-4%2A4%2A130%3D36%3E0+%5C%5C++%5C%5C++x_%7B1%7D%3D+%5Cfrac%7B46-+%5Csqrt%7B36%7D+%7D%7B2%2A4%7D%3D5+%5C%5C++%5C%5C++x_%7B2%7D%3D+%5Cfrac%7B46%2B+%5Csqrt%7B36%7D+%7D%7B2%2A4%7D%3D6.5++%5C%5C++%5C%5C++y_%7B1%7D+%3D+5-4%3D1+%5C%5C++%5C%5C+y_2%3D6.5-4%3D2.5+)
0 \\ \\ x_{1}= \frac{46- \sqrt{36} }{2*4}=5 \\ \\ x_{2}= \frac{46+ \sqrt{36} }{2*4}=6.5 \\ \\ y_{1} = 5-4=1 \\ \\ y_2=6.5-4=2.5 " alt=" \left \{ {{ \sqrt{x-y+5}=3} \atop { \sqrt{x+y-5}=11-2x }} \right. \\ \\ \left \{ {{x-y-5=9} \atop {x+y-5=121-44x+4 x^{2} }} \right. \\ \\ \left \{ {{x-y=4} \atop {x+y-5-121+44x-4 x^{2} =0}} \right. \\ \\ \left \{ {{y=x-4} \atop {4 x^{2} -45x-y+126=0}} \right. \\ \\ 4x^2-45x-x+4+126=0 \\ \\ 4x^2-46x+130=0 \\ \\ D=(-46)^2-4*4*130=36>0 \\ \\ x_{1}= \frac{46- \sqrt{36} }{2*4}=5 \\ \\ x_{2}= \frac{46+ \sqrt{36} }{2*4}=6.5 \\ \\ y_{1} = 5-4=1 \\ \\ y_2=6.5-4=2.5 " align="absmiddle" class="latex-formula">
Ответ: (5; 1) и (6,5: 2,5)