11. Пусть высоты АА1, ВВ1 и СС1 непрямоугольного треугольника ABC (или их продолжения) пересекаются в точке Н. Доказать, что АН • НА1=ВН • НВ1=СН • НС1. Решение. Если рассмотреть остроугольный треугольник ABC с высотами АА1и ВВ1 , пересекающиеся в точке Н, то видно треугольники АНВ1 и ВНА1 подобны по двум углам (∠АНВ1=∠ВНА1, ∠АВ1Н=∠ВА1Н=90), поэтому АН/ВН=НВ1/НА1. Отсюда следует, что АН • НА1=ВН • НВ1. Аналогично доказывается, что ВН • НВ1=СН • НС1.
12. Рассмотрим треугольник ABC со сторонами АВ=с, АС=b и биссектрисой АА1. Обозначим буквой F точку пересечения прямой, проходящей через точку А1 и перпендикулярной к АА1, с большей (точнее, не меньшей) из сторон АВ и АС. Исходя из признака равенства треугольников по 2 сторонам и биссектрисе, проведенным из одной вершины и по теореме о биссектрисе треугольника: AF=2bc/(b+c). Следовательно, АА1=2bc/(b+c)*cos (A/2). Утверждение доказано