Найти наибольшее и наименьшее значение функции y=x+4/** корень из х ** отрезке [1;9]

0 голосов
1.5k просмотров

Найти наибольшее и наименьшее значение функции y=x+4/на корень из х на отрезке [1;9]


Алгебра (12 баллов) | 1.5k просмотров
Дан 1 ответ
0 голосов

Решите задачу:

y= \frac{x+4}{ \sqrt{x} }
y(1)= \frac{1+4}{ \sqrt{1} } =5
y(9)= \frac{9+4}{ \sqrt{9} }= \frac{13}{3} =4 \frac{1}{3}
y'= \frac{(x+4)'* \sqrt{x} -(x+4)*( \sqrt{x} )'}{ ( \sqrt{x} )^{2} }
y'= \frac{ \sqrt{x} -(x+4)* \frac{1}{2 \sqrt{x} } }{x }
\frac{ \sqrt{x} -(x+4)* \frac{1}{2 \sqrt{x} } }{x } =0
\sqrt{x} -(x+4)* \frac{1}{2 \sqrt{x} } =0
2x-x-4=0
x=4
y(4)= \frac{4+4}{ \sqrt{4} } =4
y_{min} =y(4)=4
y_{max} =y(1)=5
(942 баллов)