1) выпишите все натуральные числа , расположенные между числами 179 и 205 , которые...

0 голосов
21 просмотров

1) выпишите все натуральные числа , расположенные между числами 179 и 205 , которые делятся на 2 , но не делятся на 5

2) запимите два числа больше 100 , кратные числу 28


Математика (23 баллов) | 21 просмотров
Дано ответов: 2
0 голосов

1) делятся на 2: 180, 182, 184, 186, 188, 200, 202, 204, из них делятся еще и на 5: 180 и 200; без них получаем числа: 182, 184, 186, 188, 202 и 204;
2) кратные числу 28: 28, 56, 84, 112, 140, 168, ...
из них большие 100: 112 и 140.

(51.0k баллов)
0 голосов

Общим делителем нескольких чисел называется число, которое является делите-лем каждого из них. Например, числа 36, 60, 42 имеют общие делители 2, 3 и 6. Среди всех общих делителей всегда есть наибольший, в данном случае это 6. Это и есть наибольший общий делитель (НОД) . 

Чтобы найти наибольший общий делитель (НОД) нескольких чисел надо: 

1) представить каждое число как произведение его простых множителей, например: 

360 = 2 · 2 · 2 · 3 · 3 · 5 , 

2) записать степени всех простых множителей: 

360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 51, 

3) выписать все общие делители (множители) этих чисел; 

4) выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях; 

5) перемножить эти степени. 

П р и м е р . Найти НОД чисел: 168, 180 и 3024. 

Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 , 

180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51 , 

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71 . 

Выпишем наименьшие степени общих делителей 2 и 3 

и перемножим их: 

НОД = 22 · 31 = 12 . 
Наименьшее общее кратное 

Общее кратное. Наименьшее общее кратное. 

Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например, числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 – тоже их общие кратные. Среди всех общих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК) . 

Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо: 

1) представить каждое число как произведение его простых множителей, например: 

504 = 2 · 2 · 2 · 3 · 3 · 7 , 

2) записать степени всех простых множителей: 

504 = 2 · 2 · 2 · 3 · 3 · 7 = 23 · 32 · 71, 

3) выписать все простые делители (множители) каждого из этих чисел; 

4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел; 

5) перемножить эти степени. 

П р и м е р . Найти НОК чисел: 168, 180 и 3024. 

Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 , 

180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51 , 

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71 . 

Выписываем наибольшие степени всех простых делителей 

и перемножаем их: 

НОК = 24 · 33 · 51 · 71 = 15120 .

(20 баллов)