
0\\
x\in(-2;\infty)\\\\
\sqrt{x+2}=t\\
x=t^2-2\\\\
log_{2}^2(t+1) > log_{2}(t+1)^3-2}\\
log_{2}^2(t+1)-3log_{2}(t+1)+2>0\\
log_{2}(t+1)=z\\
z^2-3z+2>0\\
(z-1)(z-2)>0\\
z\in(-\infty;1) \ \cup (2;\infty)\\\\
t=1\\
t=3\\
x=7\\
x=-1\\\\
" alt="\sqrt{x+2}>0\\
x\in(-2;\infty)\\\\
\sqrt{x+2}=t\\
x=t^2-2\\\\
log_{2}^2(t+1) > log_{2}(t+1)^3-2}\\
log_{2}^2(t+1)-3log_{2}(t+1)+2>0\\
log_{2}(t+1)=z\\
z^2-3z+2>0\\
(z-1)(z-2)>0\\
z\in(-\infty;1) \ \cup (2;\infty)\\\\
t=1\\
t=3\\
x=7\\
x=-1\\\\
" align="absmiddle" class="latex-formula">
Получаем