7 класс. Доказать равенство остроугольных треугольников по двум катетам и высоте,...

0 голосов
64 просмотров

7 класс. Доказать равенство остроугольных треугольников по двум катетам и высоте, проведенной из вершины третьего угла.


Математика (6.7k баллов) | 64 просмотров
Дано ответов: 2
0 голосов

Первый треугольник 
h -высота 
v и w - углы треугольника 

второй треугольник 
h1 - высота 
v1 и w1 - углы треуг. 

h=h1 
v=v1 
w=w1 

Рассмотрим 1 треугольник: Высота делит его на два прямоугольных треугольника, назовем их а и б. рассмотрим треугольник а: нам известен его катет (который является высотой начального треугольника) и угол v (который является общим у треугольника а и начального треуг. ) нам нужно узнать неизвестный угол прямоугольного треугольника а. Нам известен угол v, поэтому неизвестный нам угол равен 90-v. Таким же образом во втором начальном треугольнике высота делит треугольник на два прямоугольных треуг а1 и б1. Находим неизвестный угол он будет равен 90-v1, а т. к. v=v1 то неизвестные нам углы равны. соответственно треугольник а равен треуг а1, по второму признаку равенства треугольников (если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны) . 

Таким же образом доказываем что треугольники б и б1 равны. 

Из этих двух доказательств следует что гипотенузы треугольников а и а1 равны, и гипотенузы треугольников б и б1 тоже равны, а эти гипотенузы являются сторонами начального треугольника. Третья сторона равна каждого из этих треугольников равна, сумме катетов прямоугольных треугольников а и б (а1 и б1), и соответственно третьи стороны данных треугольников тоже равны, следовательно первый и второй треугольники равны по трем сторонам.)

(409 баллов)
0 голосов

Первый треугольник 
h -высота 
v и w - углы треугольника 

второй треугольник 
h1 - высота 
v1 и w1 - углы треуг. 

h=h1 
v=v1 
w=w1 

(46 баллов)