2}} \right. \\\\
-(x-3)-3x \leq 14+(2-x)\\
x \neq |-\frac{13}{3};+oo)" alt=" \left \{ {{x+3<0} \atop {2-x<0}} \right. \\
\left \{ {{x<-3} \atop {x>2}} \right. \\\\
-(x-3)-3x \leq 14+(2-x)\\
x \neq |-\frac{13}{3};+oo)" align="absmiddle" class="latex-formula">
Решение первой системы будет
0}} \right. \\
\left \{ {{-4x^2-5x+21 \leq 0} \atop {x<0}} \right. " alt="x^2-3x+1-\frac{x^3+x^2+3x-21}{x} \geq 3\\
\frac{-4x^2-2x+21}{x} \geq 3\\
\frac{-4x^2-2x+21-3x}{x} \geq 0\\
x \neq 0\\
\left \{ {{-4x^2-5x+21 \geq 0} \atop {x>0}} \right. \\
\left \{ {{-4x^2-5x+21 \leq 0} \atop {x<0}} \right. " align="absmiddle" class="latex-formula">
решение первой системы
\\
-3 \ \ \ \frac{7}{4}\\\\
x >0\\
(-oo;-3] \ U \ (0;\frac{7}{4}] \\\\
" alt="-4x^2-5x+21 \geq 0\\
D=25+4*4*21=19^2\\
x=-3\\
x=\frac{7}{4}\\
---------------->\\
-3 \ \ \ \frac{7}{4}\\\\
x >0\\
(-oo;-3] \ U \ (0;\frac{7}{4}] \\\\
" align="absmiddle" class="latex-formula">
Объединяя решения