Помогите, пожалуйста, решить это уравнение!!!

0 голосов
26 просмотров

Помогите, пожалуйста, решить это уравнение!!!


image

Алгебра (24 баллов) | 26 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

{ cos 2x + 2cos^2 x - sin x = 0
{ ctg x < 0
cos^2 x - sin^2 x + 2cos^2 x - sin x = 0
3cos^2 x - sin^2 x - sin x = 0
3 - 3sin^2 x - sin^2 x - sin x = 0
4sin^2 x + sin x - 3 = 0
(sin x + 1)(4sin x - 3) = 0
1) sin x = -1
2) sin x = 3/4
Два простых уравнения
1) x = 3pi/2 + 2pi*k
2) x = arcsin(3/4) + 2pi*k
x = pi - arcsin(3/4) + 2pi*k
Но нужно учесть, что ctg x < 0.
При sin x = -1 будет cos x = 0, ctg x = 0 - не подходит
x = arcsin(3/4) + 2pi*k, тогда cos x > 0, и ctg x > 0 - не подходит
x = pi - arcsin(3/4) + 2pi*k, тогда cos x < 0 - подходит.



(320k баллов)