Помогите решить одз в правой части для тригонометрического уравнения

0 голосов
32 просмотров

Помогите решить одз в правой части для тригонометрического уравнения


image

Алгебра (58 баллов) | 32 просмотров
0

Выражение под корнем есть -cos 2x, оно должно быть неотрицательным. Решаете простейшее неравенство cos2x<=0

0

интересно, а как квадрат может быть меньше 0, если мы не использует комплексные числа?

Дан 1 ответ
0 голосов

Я нашла из логики практически. Видно, что под корнем должно быть не отрицательное число, а значит значение |cosx|>|sinx|
Открываем тригонометрический круг и смотрим, где cos
X>+- П/4 +Пn

(340 баллов)
0

Если модуль соsx>модуля sinx, то выражение под корнем будет отрицательным!!! Для примера возьму x=2пи +пи*n(согласно вашему ответу, это разрешено) Но тогда под корнем будет -1. Думаю, ваш ответ ошибочен. Вообще, ответом должно быть двойное неравенство

0

как бы под корнем у нас два квадрата. квадрат любого числа есть число положительное. сошлашусь, что неравенство двойное.

0

от круга надо отрезать две зоны

0

у меня получилось что cos2x<=0 а дальше двойное неравенство