Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольника равны.
Доказательство
Возьмём треугольники ABC и A1B1C1, у которых AB=A1B1, BC=B1C1, CA-C1A1. Докажем, что треугольник ABC равен треугольнику A1B1C1. Приложим треугольник АВС к треугольнику А1В1С1 так, чтобы вершина А совместилась с вершиной А1, вершина В - с вершиной В1, а вершины С и С1 оказались по разные стороны от прямой А1В1.
Так как по условию теоремы стороны АС и А1С1, ВС и В1С1 равны, то треугольники A1C1C и В1С1С - равнобедренные. По теореме о свойстве углов равнобедренного треугольника Угол 1 равен углу 2, угол 3 равен углу 4, поэтому Угол А1СВ1 равен углу А1С1В1. Итак, АС = А1С1, BC=B1C1, Угол C=УглуC1.
Следовательно, треугольники ABC и A1B1C1 равны по первому признаку равенства треугольников. Теорема доказана.