Площадь параллелограмма равна 96 дм периметр 44 дм в квадрате а расстояние между большими...

0 голосов
46 просмотров

Площадь параллелограмма равна 96 дм периметр 44 дм в квадрате а расстояние между большими сторонами 8 дм в квадрате вычислить расстояние между меньшими сторонами параллелограмма ПОМОГИТЕ


Геометрия (19 баллов) | 46 просмотров
0

ну помогите же!!!

0

аааа

0

...

Дан 1 ответ
0 голосов
Правильный ответ

1. Построим перпендикуляр СН, чтобы показать расстояние между параллельными большими сторонами ВС и AD, и перпендикуляр DO, чтобы показать расстояние между меньшими сторонами АВ и CD. Найдем AD, зная площадь параллелограмма и его высоту СН:
Sabcd= AD*CH, отсюда
AD=S/CH=96/8=12 дм
2. Зная периметр, найдем АВ:
Pabcd=2AD+2AB, отсюда 
AB=(P-2AD)/2=(44-24)/2= 10 дм
3. В прямоугольном треугольнике CHD найдем по теореме Пифагора DH:
DH = √DC²- CH²= √10² - 8² =√36 = 6 дм
4. Треугольники AOD и DНС подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого. В нашем случае:5. Для подобных треугольников можно записать:
AD/CD=OD/DH, отсюда
OD=AD*DH/CD=12*6/10=7.2 дм


image
(7.1k баллов)