Так как ВД - высота, то треугольники АДВ и СДВ - прямоугольные, угол АДВ = СДВ = 90 градусов.
Докажем равенство этих прямоугольных тр-ков.
Так как Д - середина АС, то АД = СД, а это катеты этих тр-ков.
Катет ВД - является общим.
Получили, что прямоугольные тр-ки
АДВ и СДВ равны по двум катетам.
Из равенства этих тр-ков следует равенство сторон АВ = ВС.
Получили, что у тр-ка АВС две стороны равны, значит он равнобедренный.
Доказано.