Свойства степени с натуральным показателем справедливы и для степени с любым целым показателем (нужно только предполагать, что основание степени не равно нулю).1 свойство: При умножении степеней с одинаковыми основаниями основание оставляют тем же, а показатели степеней складывают.Пример: 2 свойство: При делении степеней с одинаковыми основаниями основание оставляют тем же, а из показателя степени делимого вычитают показатель степени делителя.Пример: = =3 свойство: При возведении степени в степень основание оставляют прежним, а показатели перемножают.Пример: 4 свойство: При возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.Пример: = 2–2 . (a3)–2(b–5)–2 = a–6b10.5 свойство: , где в =/= 0.Пример: