Помогите пожалуйста^^ интеграл sin^4x dx и интеграл е^x(2x-x^2)dx

0 голосов
17 просмотров

Помогите пожалуйста^^
интеграл sin^4x dx и интеграл е^x(2x-x^2)dx


Алгебра (19 баллов) | 17 просмотров
0

ответ во втором напиши

0

В первом привести подобные надо!

Дан 1 ответ
0 голосов

1)integralsin^4xdx=integral(sin^2x)^2dx=1/4integral (2sin^2x)^2dx=1/4integral(1-cos2x)^2dx=1/4integral(1-2cos2x+cos^2 (2x))dx=1/4(integraldx-integral(2cos2x)dx+
+integralcos^2 (2x)dx)=1/4(x-sin2x+1/2integral(1+cos4x)dx)=1/4x-1/4 sin2x+1/8*(x+1/4sin4x)=1/4*x-1/4*sin2x+1/8x+1/32sin4x+c ;
2)u=2x-x^2;  du=d(2x-x^2); du=(2-2x)du.
dv=e^xdx; v=integral e^xdx=e^x.
integral e^x(2x-x^2)dx=(2x-x^2)*e^x-integrale^x(2-2x)dx=
найдем integrale^x(2-2x)dx по частям, как выше сделано
u=2-2x; du=d(2-2x); du=-2dx.
dv=e^xdx;  v=integrale^x)dx=e^x.
integrale^x(2-2x)dx=(2-2x)*e^x-integral((e^x)(-2))dx=(2-2x)e^x+2e^x+c
integrale^x(2x-x^2)dx=(2x-x^2)*e^x-(2-2x)e^x+2e^x+c=2xe^x-e^x*(x^2)-2e^x+2xe^x+2e^x+c=4xe^x-e^x*(x^2)+c где-то ошибка! найти не могу! Думаю, так надо делать

(20.4k баллов)
0

огромное спасибо!)))))...