В правильной усеченной пирамиде стороны оснований 5 и , а боковое ребро наклонено под...

0 голосов
91 просмотров

В правильной усеченной пирамиде стороны оснований 5 и , а боковое ребро наклонено под углом 45 к основанию. Найти боковую поверхность пирамиды.


Геометрия (734 баллов) | 91 просмотров
0

Анюта. К тому времени, когда я дописал решение, твой вопрос почему-то отметился как нарушение, и теперь я не могу ответить на него, не принимается ни ответ, ни комментарий. Нашел твой вопрос заново, или это заданный раньше? попробую ответить здесь, может получится.

Дан 1 ответ
0 голосов
Обозначим вершины оснований нижнего АВС, верхнего соответственно А1В1С1. Проведем высоты треугольников АD и A1D1. AD и A1D1 соответственно равны  
5*√(3)/2=2,5*√(3) и 7*√(3)/2=3,5*√(3). Проведем ось симметрии (ось вращения) пирамиды О1О. Отметим, что точки О1 и О являются центрами треугольников (центрами описанных вокруг треугольников окружностей) и находятся в точках пересечения соответствующих медиан. Поскольку медианы в точке пересечения делятся в отношении 2:1 (или 2/3:1/3), то A1O1=2,5*√(3)*(2/3)=(5/3)*√(3)=(10/6)*√(3),
O1D1=2,5*√(3)*(1/3)=(5/6)*√(3),  AO=5,5*√(3)*(2/3)=(7/3)*√(3)=(14/6)*√(3), OD=3,5*√(3)*(1/3)=(7/6)*√(3).

Рассечем пирамиду вертикальной плоскостью, проходящей через A1D1 и AD. В сечении получим неравнобочную трапециюAA1D1D. AA1 - это боковое ребро пирамиды, и угол между нею и большим основанием трапеции равен 45° (это угол между боковым ребром и плоскостью основания пирамиды). DD1 - это апофема боковой грани пирамиды. Основания трапеции - это высоты оснований, и они равны соответственно 2,5*√(3) и 7*√(3)/2=3,5*√(3). Проекция оси симметрии (отрезок О1О) делит нашу трапецию на две прямоугольные трапеции АА1О1О и ОО1D1D. В трапеции АА1О1О из вершины А1 опусти перпендикуляр (высоту) А1Е на основание АО. Она разобьет трапецию АА1О1О на прямоугольник ЕА1О1О и прямоугольный треугольник АА1Е, в котором AE=AO-EO=AO-A1O1=(14/6)*√(3)-(10/6)*√(3)=(4/6)*√(3). Так как острый угол треугольника АА1Е равен 45°, то треугольник равнобедренный и А1Е, а значит и О1О=(4/6)*√(3). 

В трапеции ОО1D1D из вершины D1 опусти перпендикуляр (высоту) D1F на основание ОD. Она разобьет трапецию ОО1D1D на прямоугольник ОО1D1F и прямоугольный треугольник FD1D, в котором FD=OD-OF=OD-O1D1=(7/6)*√(3)-(5/6)*√(3)=(2/6)*√(3).
По теореме Пифагора вычисляем, что D1D=√(5/3).
Поскольку боковые грани пирамиды представляют собой трапеции с основаниями 5 и 7 и высотой (равна апофеме боковой грани, т.е D1D), то площадь одной боковой грани равна ((5+7)/2)*√(5/3)
=6*√(5/3), а вся площадь боковой поверхности 3*6*√(5/3)=18*√(5/3)=6*√(15).
(1.6k баллов)