√2cos(π/4+x)-cosx=1 √2sin(π/4-x/2)+sinx/2=1
√2(cosπ/4*cosx-sinπ/4*sinx)-cosx=1 √2(sinπ/4*cosx/2-cosπ/4*sinx/2)+sinx/2=1
√2*(√2/2*cosx-√2/2*sinx)-cosx=1 √2(√2/2*cosx/2-√2/2*sinx/2)+sinx/2=1
√2*√2/2(cosx-sinx)-cosx=1 √2*√2/2(cosx/2-sinx/2)+sinx/2=1
cosx-sinx-cosx=1 cosx/2-sinx/2+sinx/2=1
-sinx=1 cosx/2=1
sinx=-1 x/2=2πn, n∈Z
x=-π/2+2πn, n∈Z x=4πn, n∈Z