Сделаем рисунок и рассмотрим его.
Пусть ВМ и АD пересекаются в точке Н.
Медиана ВМ делит АС на два равных отрезка АМ=СМ.
АМ=4:2=2
АН в треугольнике АВМ является высотой - угол АНВ - прямой , т.к. АD перпендикулярна ВМ.
Но она же и медиана, т.к. по условию ВН=НМ, следовательно, треугольник ВАМ - равнобедренный
( в равнобедренном треугольнике медиана, высота и биссектриса, проведенные из вершины угла против основания - совпадают, и, наоборот, если медиана и высота треугольника равны, то этот треугольник - равнобедренный).
АВ=АМ=2
-------------( с нескольких попыток не удалось загрузить рисунок, но он очень простой, несложно выполнитьсамостоятельно)