Где
Частные производные:

\ \ \ f(x,y,z)=x^2z^2-y^2z^2-e^{xyz}-a \\
\frac{dz}{dx}=-\frac{\frac{df}{dx}}{\frac{df}{dz}} \\
\frac{df}{dx}=2xz^2-yze^{xyz}, \ \ \ \frac{df}{dz}=2x^2z-2y^2z-xye^{xyz} \\
\frac{dz}{dx}=-\frac{2xz^2-yze^{xyz}}{2x^2z-2y^2z-xye^{xyz}} \\
\\
\frac{df}{dy}=-2yz^2-xze^{xyz}, \ \ \ \frac{df}{dz}=2x^2z-2y^2z-xye^{xyz}\\
\frac{dz}{dy}=-\frac{-2yz^2-xze^{xyz}}{2x^2z-2y^2z-xye^{xyz}} \\ " alt="x^2z^2-y^2z^2-e^{xyz}=a \ \ \ <=> \ \ \ f(x,y,z)=x^2z^2-y^2z^2-e^{xyz}-a \\
\frac{dz}{dx}=-\frac{\frac{df}{dx}}{\frac{df}{dz}} \\
\frac{df}{dx}=2xz^2-yze^{xyz}, \ \ \ \frac{df}{dz}=2x^2z-2y^2z-xye^{xyz} \\
\frac{dz}{dx}=-\frac{2xz^2-yze^{xyz}}{2x^2z-2y^2z-xye^{xyz}} \\
\\
\frac{df}{dy}=-2yz^2-xze^{xyz}, \ \ \ \frac{df}{dz}=2x^2z-2y^2z-xye^{xyz}\\
\frac{dz}{dy}=-\frac{-2yz^2-xze^{xyz}}{2x^2z-2y^2z-xye^{xyz}} \\ " align="absmiddle" class="latex-formula">