Сторона основания m, диагональ основания m√2 Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2. tg (α/2) = (m√2/2) / H а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2 б) Боковое ребро b = (m√2/2) / sin (α/2) в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2 L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2) Угол между боковой гранью и плоскостью основания sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α)) г) Двугранный угол при боковом ребре - это не знаю.
А я немного ошибся. L^2 = b^2 - (m/2)^2 = (m^2/2) / sin^2 (α/2) - m^2/4
Соответственно и угол бета придется пересчитать. Рисунок я сейчас дам. А на листке оформлять не буду - я и так много сделал.
L = m/2*√(2/sin^2 (a/2) - 1) = m/2*√(2 - sin^2(a/2)) / sin(a/2)
sin beta = H / L = m√2*ctg(a/2) / 2 * 2sin(a/2) / (m*√(2 - sin^2(a/2)))
sin beta = = √2*cos(a/2) / √(2 - sin^2(a/2))
Вот картинка: http://s15.postimg.org/z76yatddn/Pyramid.jpg