Прямоугольник задан неравенствами: -1≤x≤4 и 1≤y≤3
Получаем, вершины прямоугольника - точки с координатами
(-1;1), (-1;3), (4;1), (4;3), стороны лежат на прямых х=-1, х=4, у=1, у=3
При осевой симметрии относительно оси Ох данный прямоугольник переходит в прямоугольник, вершины которого имеют координаты (-1;-1), (-1;-3), (4;-1), (4;-3), а стороны лежат на прямых х=-1, х=4, у=-1, у=-3.
Следовательно, новый прямоугольник можно задать неравенствами:
-1≤x≤4 и -1≤y≤-3