y = x³ - 3x² - 9x + 2
производная
y' = 3x² - 6x - 9
приравняем y' нулю и найдём экстремальные точки
3x² - 6x - 9 = 0
или
x² - x - 3 = 0
D = 1 + 12 = 13
√D = √13
x₁ = 0,5(1 - √13) ≈ -1,3
x₂ = 0,5(1 + √13) ≈ 2,3
Поскольку графиком производной y' = 3x² - 6x - 9 является парабола веточками вверх, то отрицательные значения производной будут находиться между корнями х₁ и х₂.
Поэтому в точке х₁ производна меняет знак с + на - и это точка макчимума.
В точке х₂ производная меняет знак с - на +, значит, это точка минимума.
Ответ: в точке x₁ = 0,5(1 - √13) имеет место локальный макчимум,
в точке x₂ = 0,5(1 + √13) имеет место локальный минимум