В параллелограмме АBCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь...

0 голосов
65 просмотров

В параллелограмме АBCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.


Математика (19 баллов) | 65 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Диагональ ac делить площадь параллелограмма пополам в силу того что у него противоположные стороны равны и значит равны треугольники abc и acd так же диагонали параллелограмма перечеркаются и точкой пересечения делятся пополам то есть am=mc треугольники abm и bmc имеют общую высоту площадь треугольника пол основания на высоты тогда площади этих треугольников равны тк am=mc тогда площадь треуг bmc вдвое меньше треугольника abc а значит в 4 раза меньше параллелограмма