AB-диаметр окружности с центром в точке O,хорда EF пересекает диаметр в точке K, EK= 4,...

0 голосов
189 просмотров

AB-диаметр окружности с центром в точке O,хорда EF пересекает диаметр в точке K, EK= 4, KF= 6 ,OK= 5.

1)Найти радиус окружности

2)Найдите расстояние от точки О до хорды BF

3)Найдите острый угол между AB и хордой EF

4)Чему равна хорда FM,если хорда EM параллельна AB


Геометрия (15 баллов) | 189 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) По свойству хорд EK*KF = R² - OK².
Отсюда R =√(EK*KF + OK²) = √(4*6+5²) = √49 = 7.
2)  Расстояние от точки О до хорды BF - это высота равнобедренного треугольника ЕОF: h = √(7² - (4+6)/2)²) = √(49 - 25) = √24 = 4,8989.
3) Острый угол между AB и хордой EF найдем по теореме косинусов:
cos FKO = (KF
²+KO²-R²)/(2*KF*KO) = (6²+5²-7²)/(2*6*5) =12/60 = 0,2.
FKO = arc cos 0,2 = 1,36944 радиан = 78,463°.
4) Для нахождения хорды FM определим синус угла FEM, равного углу FKO: sin FKO = √(1-(0,2)²) = 0,97979.
Далее находим синус угла EMF через косинус угла EOF, который в 2 раза больше (по свойству вписанного и центрального углов):
cos EOF = (2R² - EF²) / (2R²) = (2*7² - 10²) / (2*7²) = 98 - 100 / 98 =
= -0,02041.
sin EMF = √((1-(-0,02041) / 2) = 0,714286.
Сторону MF находим по теореме синусов:
MF = 10* 0,97979 / 0,714286 = 13,7171.

(309k баллов)