MN и NK- отрезки касательных, проведенных к окружности с центром О, угол MNK= 90. Найти радиус окружности, если ON= 2 корня из двух см.
Касательные перпендикулярны к радиусу. ∠ОMN=∠OKN=∠MNK=90°, OK=OM, MN=KN, значит OMNK - квадрат. ON - его диагональ. Радиус окружности равен стороне квадрата. R=OK=OM=ON/√2=2 см - это ответ.