Соединим центры окружностей с точками их пересечения, получим четырёхугольник, у которого все стороны равны (являясь радиусами).
Диагоналями этого четырёхугольника являются общая хорда и отрезок, соединяющий центры окружностей.
Известно, что четырёхугольник, у которого все стороны равны является ромбом(в частном случае - квадратом).
Диагонали получившегося ромба по свойству ромба перпендикулярны.
Следовательно общая хорда перпендикулярна отрезку, соединяющему центры окружностей, что и требовалось доказать.