ПОмогите решить систему {xy=y^x [x^3=y^2

0 голосов
24 просмотров

ПОмогите решить систему

{xy=y^x

[x^3=y^2


Алгебра (95 баллов) | 24 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

{xy=y^x      (1)

{x^3=y^2     (2)

Из (2) получим х = у^(2/3)

Подставим в (1)

у^(2/3) ·y¹ = y^(у^(2/3))

у^(5/3) = y^(у^(2/3))

Приравниваем степени

5/3 = у^(2/3)

откуда

у  = (5/3)^ (3/2) или

у = √(5/3)³ или

у = (5/3)· √(5/3)

Вернёмся к системе

{xy=y^x      (1)

{x^3=y^2     (2)

Преобразуем уравнение (1)

х = (y^x):у

х =у^(x - 1)

Подставим в (2)

у^(3·(x - 1)) = у²

приравниваем степени

3х - 3 = 2

3х = 5

х = 5/3

Ответ: х = 5/3, у = (5/3)· √(5/3)

(145k баллов)
0 голосов

x=y^(x-1)

x=y^(2/3)

y^(2/3)=y^(x-1)

x-1=2/3

x=5/3

y=x^(3/2)=(5/3)^(3/2)=5/3*sqrt(5/3)

(232k баллов)