ABCD - параллелограмм, точка K - середина стороны AB. Отрезок DK пересекает диагональ AC...

0 голосов
136 просмотров

ABCD - параллелограмм, точка K - середина стороны AB. Отрезок DK пересекает диагональ AC в точке O. Найдите отношение AO:OC.


Геометрия (39 баллов) | 136 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если провести BD (пусть середина BD - точка К), то в треугольнике АВD DK и АК = АС/2 - медианы.

Поэтому АО = АК*2/3 = АС/3; 

ОС = АС*2/3 = 2*АО;

АО:ОС = 1:2.

(69.9k баллов)