Найти производную функции:у=2x^5/6 - 3x^7

0 голосов
37 просмотров

Найти производную функции:
у=2x^5/6 - 3x^7


Алгебра (302 баллов) | 37 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Решите задачу:

y'=2* \frac{5}{6} x^{ \frac{5}{6}-1}-3*7x^{7-1}= \frac{5}{3}x^{- \frac{1}{6}}-21x^{6}= \frac{5}{3 \sqrt[6]{x}}-21x^{6}
(63.8k баллов)
0

точно-точно, там корень должен быть

0

затуп)

0

Спасибо!!))

0 голосов

Решите задачу:

y'=(\frac{2x^5}{6}-3x^7)'=\frac{2}{6}\cdot 5x^4-3\cdot 7x^6=\frac{5}{3}x^4-21x^6

y'=(2x^{\frac{5}{6}}-3x^7)'=\frac{5}{3}\cdot\frac{1} {\sqrt[6]{x}}-21x^6
(834k баллов)
0

Вы неправильно решали - первое чило 2x5/6 - это степень такая ч5/6, а не знаменатель 6

0

Я уже не первый раз пишу подобные примеры, и все понимали правильно.

0

Здесь двоякое чтение условия ! Пишите ,используя редактор формул, не будет проблем

0

Все равно спасибо! :)