Найдём катеты: а = с·cosα, b = c·sinα.
При вращении вокруг гипотенузы с получаются два конуса, радиус основания которых R = c·cosα·sinα
Высота конуса, образующей которого является катет а = с·cosα, равна
h₁ = a·cosα = с·cosα·cosα = c·cos²α
Высота конуса, образующей которого является катет b = c·sinα, равна
h₂ = a·sinα = с·sinα·sinα = c·sin²α
Объём 1-го конуса:
V₁ = 1/3 πR²·h₁ = 1/3 ·π·(c·cosα·sinα)²·c·cos²α
Объём 2-го конуса:
V₂ = 1/3 πR²·h₂ = 1/3 ·π·(c·cosα·sinα)²·c·sin²α
Объём всего тела вращения:
V = V₁ + V₂ = 1/3 ·π·(c·cosα·sinα)²·c·cos²α + 1/3 ·π·(c·cosα·sinα)²·c·sin²α
= 1/3 ·π·(c·cosα·sinα)²·c·(cos²α + sin²α) = 1/3 ·π·c³·(cosα·sinα)² =
= 1/12 ·π·c³·(4cos²α·sin²α) = 1/12 ·π·c³·sin²2α