(1/3)^5x-1 + (1/3)^5x = 4/9 - Укажите промежуток которому принадлежит корень уравнения

0 голосов
37 просмотров

(1/3)^5x-1 + (1/3)^5x = 4/9 - Укажите промежуток которому принадлежит корень уравнения


Алгебра (86 баллов) | 37 просмотров
Дано ответов: 2
0 голосов

(1/3)^5x-1 + (1/3)^5x = 4/9
3*(1/3)^5x+(1/3)^5x=4/9
4*(1/3)^5x=4/9
(1/3)^5x=1/9
5x=2
x=2/5=0.4
Принадлежит отрезку от 0 до 1))если концы отрезка целые числа)) 

(1.3k баллов)
0 голосов

(1/3)^(5x-1)*(1+1/3)=4/9

(1/3)^(5x-1)*4/3=4/9

(1/3)^(5x-1)=1/3

5x-1=1

5x=2

x=2/5

Корень уравнения принадлежит промежутку (0; 1)

(3.2k баллов)