Сторона равностороннего треугольника равна 10 см. Прямые, параллельные одной из его...

0 голосов
27 просмотров

Сторона равностороннего треугольника равна 10 см.
Прямые, параллельные одной из его сторон, делят данный треугольник на пять равных по площади фигур. Найдите периметр меньшего треугольника.


Геометрия (84 баллов) | 27 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Построим правильный треугольник АВС, тогда АВ=ВС=СА=10, пусть АС-основание. Параллельно АС проведем четыре параллельные прямые пересекающие стороны АВ и ВС. Параллельня прямая, которая ближе к вершине В пересекает стороны треуг АВ в т.К, ВС в т.М. Нам нужно найти периметр треуг КВМ. У нас получилось, что треуг АВС подобен треуг КВМ, значит соотношение сторон и периметра этих треуг будет равно к-коэффициенту подобия. А соотношение площадей этих треуг =к². Найдем площадь треуг АВС. Для этого из вершины В на сторону АС проведем высоту ВН. В правильном треугольнике высота является медианой и биссектриссой, т.к. треуг равносторонний. Тогда АН=АС/2=10/2=5 см. Найдем ВН²=АВ²-АН² ВН²=10²-5²=100-25=75 ВН=√75=5√3. Площадь треуг АВС SтрАВС=ВН*АС/2=(10*5√3)/2=25√3.  Найдем  SтрКВМ=SтрАВС/5 (по условию) SтрКВМ=(25√3)/5=5√3 тогда Из подобия треуг SтрАВС:SтрКВМ=к² 25√3:5√3=5=к² к=√5. Теперь напишем соотношение периметров РтрАВС:РтрКВМ=к 30:РтрКВМ=√5 РтрКВМ=30/√5

(648 баллов)