Если в трапеции ABCD AB=BC=CD, такая трапеция равнобедренная. Если угол BAD равен 40∘, то угол CDA равен 40∘, угол BCD равен, 140∘ угол DAB равен 140∘. Четырёхугольник KLMN - ромб. Меньший угол LMN= угол LKN=40∘.
Рассмотрим Δ LCM - равнобедренный с тупым углом равеным 140∘, при основании Δ LCM углы равны (180-140)/2=40/2=20∘ Если проведём диагональ ромба с вершины L к N, расмотрим Δ LMN -равнобедренный с углом при основании 90-20=70, следовательно угол LMN=180-(70+70)=40∘