Сколько четырехзначных чисел можно составить из цифр 0 1 2 3 4 5 если цифры не...

0 голосов
34 просмотров

Сколько четырехзначных чисел можно составить из цифр 0 1 2 3 4 5 если цифры не повторяются
?


Математика (157 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Размещения A(m,n)=n!/(n−m)!, где n=6 - общее количество чисел, m=4 - число чисел в выборке.
Находим:

d1=A(4,6)=6!/(6−4)!=3∗4∗5∗6=360
Числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где  n=5, m=3, т.к. одна цифра (0) уже использована

d2=5!/2!=3∗4∗5=60
Получили, что количество четырехзначных чисел равно D=d1−d2=360−60=300

 

(750k баллов)