Найти площадь треугольника если основание равно 2, углы при основании 30 и 45

0 голосов
53 просмотров

Найти площадь треугольника если основание равно 2, углы при основании 30 и 45


Математика (12 баллов) | 53 просмотров
Дан 1 ответ
0 голосов
Площадь трапеции = (а+в)*h/2, где а и в - основания трапеции, h-высота. Если опустить из вершины верхнего основания высоту, то получится прямоугольный треугольник АВЕ(на рисунке). Если внимательно его рассмотреть, то мы увидим, что есть прямой угол(90 градусов) и угол при основании равен 45 градусов(угол А), значит угол АВЕ равен 45 градусов(т.к. в треугольнике все три угла в сумме составляют 180 градусов). Отсюда следует, что АЕ=ВЕ, и будут они равны в корень из двух меньше гипотенузы, т.е. 5(т.к. гипотенуза равна 5 корней из двух). ВС=10(меньшее основание) и оно будет равно ЕF. А АЕ=FD(трапеция равнобокая)=5. Значит найдем большее основание = AE+EF+FD=5+10+5=20. ЕВ=h=5. Подставляем в формулу площади S=(10+20)*5/2=150/2=75. Ответ: 75
(120 баллов)