Проекцией ребра на плоскость основания является половина диагонали квадрата, лежащего в основании. 45 градусов - это угол между диагональю основания и боковым ребром, поэтому и высота и половинка диагонали основания одинаковы и равны: h = 0.5d = 4·cos45 = 2√2.
Боковая поверхность пирамиды состоит из 4-х треугольников, основанием каждого является сторона квадрата а = √((0,5d)² + (0,5d)²) = √(2·(0,5d)²) = √(2·(2√2)²) =
=√16 = 4.
Высотой треугольной боковой грани является апофема А = √(h² + (0.5a)²) =
= √(8 + 4) =√12 = 2√3
Итак, боковая поверхность пирамиды равна
Sбок = 4 (0,5·А·а) = 2·А·а = 2· 2√3·4 = 16√3
Ответ: h = 2√2, Sбок = 16√3