Отрезки AB и CD пересекаются в точке О, которая является серединой каждого из них.а)...

0 голосов
211 просмотров

Отрезки AB и CD пересекаются в точке О, которая является серединой каждого из них.
а) Докажите равенство треугольников ACD и BCD
б) Найдите угол CBD, если угол ACB = 118 градусов


Геометрия (50 баллов) | 211 просмотров
Дан 1 ответ
0 голосов

По условию: AO=OB, CO=OD
углы: AOC=BOD (как вертикальные)
треугольники: AOC=BOD (по двум сторонам и углу между ними)
отрезки: AC=BD (следует из равенства треугольников AOC и BOD)
углы: BOC=AOD (как вертикальные)
треугольники: BOC=AOD (по двум сторонам и углу между ними)
отрезки: BC=AD (следует из равенства треугольников BOC и AOD)
треугольники: ACD=BDC (по трём сторонам)
Если вы прошли тему параллелограмм можно доказать гораздо проще.
четырёхугольник ACBD -- параллелограмм (по признаку)
BC=AD, AC=BD (противоположные стороны параллелограмма)
углы CAD=CBD (противоположные углы параллелограмма)
треугольники ACD=BDC (по двум сторонам и углу между ними)

2)
угол CBD=180°-BCD-BDC
углы BDC=ACD (следует из равенства треугольников ACD и BDC)
тогда угол CBD=180°-BCD-ACD=180°-(ACD+BCD)=180°-ACB=180°-118°=62°

Если вы прошли параллелограмм, тогда
угол CBD=180°-ACB (как внутренние односторонние при сечении параллельных AC и BD прямой BC)
CBD=62°

(442 баллов)