Дан правильный треугольник со стороной а=2, точка Р находится на расстоянии 5 от вершин треугольника. Найти расстояние от точки Р до плоскости треугольника.
Решение приведено во вложении
Высота равностороннего треугольника со стороной а = 2, разбивает его на два равных прямоугольных треугольника с гипотенузой а = 2 и острыми углами 30° и 60°. По определению синус острого угла прямоугольного треугольника = отношению ПРОТИВОЛЕЖАЩЕГО катета (h) к гипотенузе а = 2 sinα = h = a * sinα = 2 * = √3 - высота равностороннего треугольника Кратчайшее расстояние от точки Р до плоскости треугольника - перпендикуляр к плоскости треугольника, основание которого делит высоту треугольника в отношении 2 : 3, считая от вершины h : 3 * 2 = 2h : 3 = 2√3/3 В прямоугольном треугольнике с гипотенузой с = 5 и катетом b = 2√3/3, по т. Пифагора 5² = (2√3/3)² + х² х² = 23 х =