1)
0," alt="\frac{x^2-4}{x+5}>0," align="absmiddle" class="latex-formula">
0," alt="(x-2)(x+2)(x+5)>0," align="absmiddle" class="latex-formula">
![(x-2)(x+2)(x+5)=0, x+5\neq 0 (x-2)(x+2)(x+5)=0, x+5\neq 0](https://tex.z-dn.net/?f=%28x-2%29%28x%2B2%29%28x%2B5%29%3D0%2C+x%2B5%5Cneq+0)
![x-2=0, x+2=0, x+5\neq 0 x-2=0, x+2=0, x+5\neq 0](https://tex.z-dn.net/?f=x-2%3D0%2C+x%2B2%3D0%2C+x%2B5%5Cneq+0)
![x=2, x=-2, x\neq -5 x=2, x=-2, x\neq -5](https://tex.z-dn.net/?f=x%3D2%2C+x%3D-2%2C+x%5Cneq+-5)
x∈(-5;-2)U(3;+∞)
2)
![f(x)=x^3-2x^2+x+3 f(x)=x^3-2x^2+x+3](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E3-2x%5E2%2Bx%2B3)
![f'(x)=3x^2-4x+1 f'(x)=3x^2-4x+1](https://tex.z-dn.net/?f=f%27%28x%29%3D3x%5E2-4x%2B1)
![f'(x)=0, 3x^2-4x+1=0 f'(x)=0, 3x^2-4x+1=0](https://tex.z-dn.net/?f=f%27%28x%29%3D0%2C+3x%5E2-4x%2B1%3D0)
D=4,
x1=1/3, x2=1 - критические точки
0, \ 3x^2-4x+1>0, \ (x-1/3)(x-1)>0" alt="f'(x)>0, \ 3x^2-4x+1>0, \ (x-1/3)(x-1)>0" align="absmiddle" class="latex-formula">
x∈(-∞;1/3)U(1;+∞), y - возрастает,
![f'(x)<0, \ 3x^2-4x+1<0, \ (x-1/3)(x-1)<0 f'(x)<0, \ 3x^2-4x+1<0, \ (x-1/3)(x-1)<0](https://tex.z-dn.net/?f=f%27%28x%29%3C0%2C+%5C+3x%5E2-4x%2B1%3C0%2C+%5C+%28x-1%2F3%29%28x-1%29%3C0)
x∈(1/3;1), у - убывает,
![f(0)=3 f(0)=3](https://tex.z-dn.net/?f=f%280%29%3D3)
![f(1/3)=(1/3)^3-2(1/3)^2+1/3+3=85/27=3 \ 4/27 f(1/3)=(1/3)^3-2(1/3)^2+1/3+3=85/27=3 \ 4/27](https://tex.z-dn.net/?f=f%281%2F3%29%3D%281%2F3%29%5E3-2%281%2F3%29%5E2%2B1%2F3%2B3%3D85%2F27%3D3+%5C+4%2F27)
![f(1)=1^3-2*1^2+1+3=3 f(1)=1^3-2*1^2+1+3=3](https://tex.z-dn.net/?f=f%281%29%3D1%5E3-2%2A1%5E2%2B1%2B3%3D3)
![f(3/2)=(3/2)^3-2(3/2)^2+3/2+3=27/8=3 \ 3/8 f(3/2)=(3/2)^3-2(3/2)^2+3/2+3=27/8=3 \ 3/8](https://tex.z-dn.net/?f=f%283%2F2%29%3D%283%2F2%29%5E3-2%283%2F2%29%5E2%2B3%2F2%2B3%3D27%2F8%3D3+%5C+3%2F8)
ymax=3 4/27
ymin=3
4)
![f(x)=x^3-2x^2+x+3 f(x)=x^3-2x^2+x+3](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E3-2x%5E2%2Bx%2B3)
![f(-1)=(-1)^3-2(-1)^2-1+3=-1 f(-1)=(-1)^3-2(-1)^2-1+3=-1](https://tex.z-dn.net/?f=f%28-1%29%3D%28-1%29%5E3-2%28-1%29%5E2-1%2B3%3D-1)
![f(2)=2^3-2*2^2+2+3=5 f(2)=2^3-2*2^2+2+3=5](https://tex.z-dn.net/?f=f%282%29%3D2%5E3-2%2A2%5E2%2B2%2B3%3D5)
![f(0)=3 f(0)=3](https://tex.z-dn.net/?f=f%280%29%3D3)
x∈(-1;1/3)U(1;2), y - возрастает,
x∈(1/3;1), у - убывает,
5) x, y - стороны прямоугольника
2x+y=20,
y=20-2x,
S=x(20-2x)=20x-2x^2,
S'=20-4x,
S'=0, 20-4x=0, -4x=-20, x=5, - критическая точка
S'<0, 20-4x<0, -4x<-20, x>5, S - убывает
S'>0, 20-4x>0, -4x>-20, x>5, S - возрастает
х=5 - точка максимума (max S)
y=10.
5 и 10 - стороны прямоугольника