Основанием пирамиды MABCD служит ромб ABCD, AC = 8, BD = 6. Высота пирамиды равна 1. Все...

0 голосов
328 просмотров

Основанием пирамиды MABCD служит ромб ABCD, AC = 8, BD = 6. Высота пирамиды равна 1. Все двугранные углы при основании равны. Найдите площадь полной поверхности пирамиды.


Геометрия (72 баллов) | 328 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если провести апофемы (высоты боковых граней), то из оснований этих апофем высота пирамиды "видна" под одинаковым углом. Это означает, что 1. все апофемы равны. 2. проекция апофемы на основание - это радиус вписанной окружности (в основание).

Ромб в основании разбивается диагоналями на четыре прямоугольных треугольника с катетами 3 и 4, поэтому сторона ромба равна 5, а высота к гипотенузе такого треугольника, - то есть радиус вписанной окружности - равна 3*4/5 = 12/5.

Итак, проекция апофемы на основание равна 2,4 а высота пирамиды 1. Отсюда апофема равна корень(1^2 + (12/5)^2) = 13/5.

Периметр ромба 5*4 = 20, площадь боковой поверхности (1/2)*20*13/5 = 26.

Площадь основания 6*8/2 = 24, складываем, получаем 

Ответ 50

 

Между прочим, Sosn/Sboc = 12/13, это косинус угла между боковой гранью (любой) и основанием. Это можно было и сразу понять, если рассмативать основание как сумму ортогональных проекций боковых граней. (Треугольник, образованный апофемой, её проекцией на основание, и высотой пирамиды, подобен треугольнику со сторонами 5,12,13, то есть косинус угла между гранью и основанием 12/13)

(69.9k баллов)