** оси абсцисс найти точку равноудаленную от точек А(1,2,3) и В(-3,3,2).

0 голосов
355 просмотров

На оси абсцисс найти точку равноудаленную от точек А(1,2,3) и В(-3,3,2).


Геометрия (20 баллов) | 355 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).

Это означает, что расстояние АС равно расстоянию ВС.

Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)

 

Расстояние между точками можно определить по формуле:

sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит

 sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)

        (x-1)^2+4+9=(x+3)^2+9+4

        (x-1)^2=(x+3)^2

         x^2-2x+1=x^2+6x+9

                    -8x=8

                        x=-1

 

      Итак, искомая точка, равноудалённая от А и В имеет координаты

      С(-1;0;0)

(106k баллов)