![image](https://tex.z-dn.net/?f=+%5Cfrac%7B%7Cx%2B3%7C-%7Cx%2B2%7C%7D%7B%7Cx%2B1%7C-%7Cx%7C%7D+%3E++%5Cfrac%7B%7Cx%2B1%7C%2B%7Cx%7C%7D%7B%7Cx%2B3%7C%7D%5C%5C%5C%5C%0A+)
\frac{|x+1|+|x|}{|x+3|}\\\\
" alt=" \frac{|x+3|-|x+2|}{|x+1|-|x|} > \frac{|x+1|+|x|}{|x+3|}\\\\
" align="absmiddle" class="latex-formula">
Найдем точки при которых в зависимости от промежутка будет меняться знак выражения под модулем .
![\begin{bmatrix}
x \geq -3\\
x \geq -2\\
x \geq -1\\
x \geq 0\\
\end{bmatrix} \begin{bmatrix}
x \geq -3\\
x \geq -2\\
x \geq -1\\
x \geq 0\\
\end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7D%0Ax+%5Cgeq+-3%5C%5C%0Ax+%5Cgeq+-2%5C%5C%0Ax+%5Cgeq+-1%5C%5C%0Ax+%5Cgeq+0%5C%5C%0A%5Cend%7Bbmatrix%7D+)
.
![image](https://tex.z-dn.net/?f=++-----------------------%3Ex%5C%5C%0A++++++++++%5C+%5C+%5C+-3+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+-2+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+-1+%5C+%5C+%5C++%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+0+)
x\\
\ \ \ -3 \ \ \ \ \ \ \ \ \ \ \ -2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ -1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 " alt=" ----------------------->x\\
\ \ \ -3 \ \ \ \ \ \ \ \ \ \ \ -2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ -1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 " align="absmiddle" class="latex-formula">
1) На интервале
![image](https://tex.z-dn.net/?f=%5Cfrac%7B-%28x%2B3%29%2Bx%2B2%7D%7B-%28x%2B1%29%2Bx%7D%3E%5Cfrac%7B-%28x%2B1%29-x%7D%7B-%28x%2B3%29%7D%5C%5C%5C%5C+%5Cfrac%7B-x-3%2Bx%2B2%7D%7B-1%7D%3E%5Cfrac%7B-2x-1%7D%7B-x-3%7D%5C%5C+1%3E%5Cfrac%7B-2x-1%7D%7B-x-3%7D%5C%5C++%0A-x-3%3E-2x-1%5C%5C%0A+x%3E2%5C%5C%0Ax%2B3%3C0%5C%5C%0Ax%3C-3%5C%5C%0A%28-3%3B2%29)
\frac{-(x+1)-x}{-(x+3)}\\\\ \frac{-x-3+x+2}{-1}>\frac{-2x-1}{-x-3}\\ 1>\frac{-2x-1}{-x-3}\\
-x-3>-2x-1\\
x>2\\
x+3<0\\
x<-3\\
(-3;2)" alt="\frac{-(x+3)+x+2}{-(x+1)+x}>\frac{-(x+1)-x}{-(x+3)}\\\\ \frac{-x-3+x+2}{-1}>\frac{-2x-1}{-x-3}\\ 1>\frac{-2x-1}{-x-3}\\
-x-3>-2x-1\\
x>2\\
x+3<0\\
x<-3\\
(-3;2)" align="absmiddle" class="latex-formula">
Не входит .
2) На интервале
![image](https://tex.z-dn.net/?f=%5Cfrac%7B2x%2B5%7D%7B-1%7D%3E%5Cfrac%7B-2x-1%7D%7Bx%2B3%7D%5C%5C+-%282x%2B5%29%3E%5Cfrac%7B-%282x%2B1%29%7D%7Bx%2B3%7D%5C%5C+%0AODZ+%5C+%5C+x%3E-3%5C%5C%0A%28x%2B3%29%282x%2B5%29%3C2x%2B1%5C%5C%0Ax+%5Cin++Net)
\frac{-2x-1}{x+3}\\ -(2x+5)>\frac{-(2x+1)}{x+3}\\
ODZ \ \ x>-3\\
(x+3)(2x+5)<2x+1\\
x \in Net" alt="\frac{2x+5}{-1}>\frac{-2x-1}{x+3}\\ -(2x+5)>\frac{-(2x+1)}{x+3}\\
ODZ \ \ x>-3\\
(x+3)(2x+5)<2x+1\\
x \in Net" align="absmiddle" class="latex-formula">
Не входит.
3) На интервале
![image](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B-%28x%2B1%29%2Bx%7D%3E%5Cfrac%7B-%28x%2B1%29-x%7D%7Bx%2B3%7D%5C%5C%0A+++%5Cfrac%7B-2x-1%7D%7Bx%2B3%7D%3C-1%5C%5C%0A+%5Cfrac%7B2x%2B1%7D%7Bx%2B3%7D%3E1%5C%5C%0A+2x%2B1%3Ex%2B3%5C%5C%0A+x%3E2)
\frac{-(x+1)-x}{x+3}\\
\frac{-2x-1}{x+3}<-1\\
\frac{2x+1}{x+3}>1\\
2x+1>x+3\\
x>2" alt=" \frac{1}{-(x+1)+x}>\frac{-(x+1)-x}{x+3}\\
\frac{-2x-1}{x+3}<-1\\
\frac{2x+1}{x+3}>1\\
2x+1>x+3\\
x>2" align="absmiddle" class="latex-formula">
![(-\infty;-3) \ \cup \ (2;\infty) (-\infty;-3) \ \cup \ (2;\infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%3B-3%29+%5C+%5Ccup+%5C+%282%3B%5Cinfty%29)
.
4) На интервале
![image](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B2x%2B1%7D%3E%5Cfrac%7B1%7D%7Bx%2B3%7D%5C%5C%0Ax+%3E%5Cfrac%7B1%7D%7B2%7D%5C%5C%0Ax+%3E-3%5C%5C%5C%5C%0A+x%2B3%3E2x%2B1%5C%5C%0A+-x%3E-2%5C%5C%0A+x%3C2)
\frac{1}{x+3}\\
x >\frac{1}{2}\\
x >-3\\\\
x+3>2x+1\\
-x>-2\\
x<2" alt=" \frac{1}{2x+1}>\frac{1}{x+3}\\
x >\frac{1}{2}\\
x >-3\\\\
x+3>2x+1\\
-x>-2\\
x<2" align="absmiddle" class="latex-formula">
Объединяя получим
5) На интервале
Так же получим решение
И того объединяя все решения получим