\frac{x^2+2x-3}{(x+1)^2}=0;\\
\left \{ {{x^2+2x-3=0} \atop {x \neq -1}} \right. \\
x_{1}=1;\ x_2=-3;\\ " alt="f(x) = \frac{x^2 + 3}{x+1};\\
f'(x)=\frac{(x^2+3)'\cdot(x+1) - (x^2+3)\cdot(x+1)'}{(x+1)^2};\\
f'(x)=\frac{2x^2+2x-x^2-3}{(x+1)^2}=\frac{x^2+2x-3}{(x+1)^2};\\
f'(x)=0, => \frac{x^2+2x-3}{(x+1)^2}=0;\\
\left \{ {{x^2+2x-3=0} \atop {x \neq -1}} \right. \\
x_{1}=1;\ x_2=-3;\\ " align="absmiddle" class="latex-formula">
Ответ: точки
являются экстремумами.