В параллелограмме ABCD точка Е лежит ** стороне АВ, отрезки DE и СЕ являются...

+776 голосов
6.2m просмотров

В параллелограмме ABCD точка Е лежит на стороне АВ, отрезки DE и СЕ являются биссектрисами углов ADC и BCD соответственно. Известно, что длина диагонали АС равна 3, а величина угла ADC равна π/3 . Найдите длину отрезка DE.


Математика | 6.2m просмотров
+106

1) По определению смежных углов

2) DA, DB – дополнительные лучи

3) значит, ∠ADB – развёрнутый угол, тогда ∠ADB = 180°.

4) Луч DC делит угол ADB на два угла и

5) по аксиоме измерения углов

6) ∠ADB = ∠ADC + ∠BDC = 180°

Дано ответов: 2
+127 голосов
Правильный ответ

Так как угол ADC равен π/3, то есть 60°, и DE - биссектриса угла ADC, то углы ADE и CDE равны по 60°:2=30°.

Сумма смежных углов параллелограмма равна 180°, значит:

∠BCD=180°-∠ADC=180°-60°=120°

Так как угол BCD равен 120° и CE - биссектриса угла BCD, то углы BCE и DCE равны по 120°:2=60°.

Рассмотрим треугольник CDE. Так как два угла в нем известны, то найдем третий угол CED:

∠CED=180°-∠CDE-∠DCE=180°-30°-60°=90°

Значит, треугольник CDE - прямоугольный.

В прямоугольном треугольнике катет лежащий против угла в 30° равен половине гипотенузы.

Введем обозначения. Пусть катет CE, лежащий против угла в 30°, равен a. Тогда гипотенуза CD равна 2а. Заметим, что CD соответствует одной из сторон параллелограмма.

Рассмотрим треугольник ВСЕ. Найдем неизвестные его углы.

Так как противоположные углы параллелограмма равны, то:

∠ABC=∠ADC=60°

Зная два угла треугольника, найдем третий:

∠BEC=180°-∠BCE-∠CBE=180°-60°-60°=60°

Все углы треугольника ВСЕ равны, значит он - равносторонний.

Одна из сторон треугольника ВСЕ обозначена как а, значит и все его стороны равны а. В том числе, сторона параллелограмма ВС=а.

Таким образом, известны в наших обозначениях стороны параллелограмма: AB=DC=2a, BC=AD=a.

Рассмотрим треугольник АВС. Запишем для него теорему косинусов:

\mathrm{AC^2=AB^2+BC^2-2\cdot AB\cdot BC\cdot\cos ABC}

Подставим известные соотношения:

\mathrm{AC^2}=(2a)^2+a^2-2\cdot 2a\cdot a\cdot\cos 60^\circ

\mathrm{AC^2}=4a^2+a^2-4a^2\cdot\dfrac{1}{2}

\mathrm{AC^2}=5a^2-2a^2

\mathrm{AC^2}=3a^2

По условию АС=3.

3a^2=3^2

a^2=3

a=\sqrt{3} (отрицательный корень смысла не имеет)

Вернемся к треугольнику CDE. Две стороны в нем теперь известны: CE=\sqrt{3}, CD=2\sqrt{3}. Запишем теорему Пифагора:

\mathrm{CE^2+DE^2=CD^2}

Выражаем искомый отрезок DE:

\mathrm{DE=\sqrt{CD^2-CE^2} }

\mathrm{DE}=\sqrt{(2\sqrt{3} )^2-(\sqrt{3} )^2} =3

Ответ: 3

(271k баллов)
+162 голосов

Пошаговое объяснение:см. во вложении

(151k баллов)