5.В первом треугольники DОС и ВОА равны по первому признаку, две стороны равны по условию, а при вершине О вертикальные углы.
Поэтому и соответственные углы равны, DСА и САВ, а это внутр. накрест лежащие при прямых DС и АВ и секущей АС, по признаку параллельности, ВС параллельно АВ, но они и равны между собой, значит, доказано требуемое.
6. раз треугольники равны, то DС=АВ, кроме того, эти стороны параллельны, т.к. углы СDВ и DВА внутр. накрест. лежащие, при прямых DС и АВ, значит, параллельны. А если две стороны параллельны и равны. то доказано. как и в первой задаче требуемое.